Lesson 15.4

Module 15: Angles and Segments in Circles

Intersecting Chords

Intersecting chords create four segments that have a proportional relationship. This relationships is called:

The Chord Chord Product Theorem: If two chords intersect, the product of the created segments from each chord must be equal.
$A Q \cdot Q B=C Q \cdot Q D$

Module 15: Angles and Segments in Circles

Chord Chord Product Theorem Practice

Find the measure of the missing segment (labeled with an ' x ') given the measures of the other three segments.

$$
\begin{aligned}
& 6 \cdot 3.4=4 \cdot x \\
& 20.4=4 x \\
& \text { Divide both sides by } 4 \ldots . \\
& x=5.1
\end{aligned}
$$

Module 15: Angles and Segments in Circles

Chord Chord Product Theorem Practice

Find the measure of the missing segment $Q B$ by solving for ' x '.

$$
\begin{aligned}
& 4 \cdot 10=8 \cdot(x+2) \\
& 40=8 \cdot(x+2)
\end{aligned}
$$

Divide both sides by 8....
$5=x+2$
Subtract 2 from both sides....
$x=3$
Plug in 3 for x, and $Q R=5 \mathrm{~cm}$

Module 15: Angles and Segments in Circles

Secants

A secant is a segment that intersects a circle at two points, where at most one endpoint is on the circle.

Module 15: Angles and Segments in Circles

Secants

When two secants connect outside of a circle, four segments are created.

The Secant Secant Product Theorem: If two secants intersect, the product of the exterior segments multiplied by the full segment lengths must be equal:
$A C \cdot B C=E C \cdot D C$

Module 15: Angles and Segments in Circles

Secants

Find the value of ' x ' in the diagram.

$$
\begin{aligned}
& A C \cdot B C=E C \cdot D C \\
& (6+14) \cdot(6)=(x+8) \cdot(8) \\
& 20 \cdot 6=8 x+64 \\
& 120=8 x+64 \\
& 56=8 x \\
& 7=x
\end{aligned}
$$

Module 15: Angles and Segments in Circles

Secants

Find the value of ' x ' in the diagram.

Module 15: Angles and Segments in Circles

Secants and Tangents

When two secants connect outside of a circle, four segments are created.

The Secant Tangent Product Theorem: If a secant and a tangent intersect, the product of the exterior segment and the entire segment of the secant will be equivalent to the square of the tangent.
$A C \cdot B C=D C^{2}$

Module 15: Angles and Segments in Circles

Secants and Tangents

$$
\begin{aligned}
& A C \cdot B C=D C^{2} \\
& (x+4) \cdot(4)=(6)^{2} \\
& 4 x+16=36 \\
& 4 x=20 \\
& x=5
\end{aligned}
$$

Module 15: Angles and Segments in Circles

Try these problems on page 823

Find the value of the variable and the length of each chord.
5.

6.

Module 15: Angles and Segments in Circles

Try these problems on page 824

Find the value of the variable and the length of each secant segment.
10.

11.

Module 15: Angles and Segments in Circles

Try these problems on page 824

Find the value of the variable.
13.

14.

