BC Integration Technique FRQs from released AP exams

- 5. Let f be the function defined by $f(x) = \frac{3}{2x^2 7x + 5}$.
 - (a) Find the slope of the line tangent to the graph of f at x = 3.
 - (b) Find the x-coordinate of each critical point of f in the interval 1 < x < 2.5. Classify each critical point as the location of a relative minimum, a relative maximum, or neither. Justify your answers.
 - (c) Using the identity that $\frac{3}{2x^2 7x + 5} = \frac{2}{2x 5} \frac{1}{x 1}$, evaluate $\int_5^\infty f(x) \, dx$ or show that the integral diverges.
 - (d) Determine whether the series $\sum_{n=5}^{\infty} \frac{3}{2n^2 7n + 5}$ converges or diverges. State the conditions of the test used for determining convergence or divergence.

- 4. Let f be the function defined for x > 0, with f(e) = 2 and f', the first derivative of f, given by $f'(x) = x^2 \ln x$.
 - (a) Write an equation for the line tangent to the graph of f at the point (e, 2).
 - (b) Is the graph of f concave up or concave down on the interval 1 < x < 3? Give a reason for your answer.
 - (c) Use antidifferentiation to find f(x).

- 5. Consider the function $f(x) = \frac{1}{x^2 kx}$, where k is a nonzero constant. The derivative of f is given by $f'(x) = \frac{k 2x}{\left(x^2 kx\right)^2}.$
 - (a) Let k = 3, so that $f(x) = \frac{1}{x^2 3x}$. Write an equation for the line tangent to the graph of f at the point whose x-coordinate is 4.
 - (b) Let k = 4, so that $f(x) = \frac{1}{x^2 4x}$. Determine whether f has a relative minimum, a relative maximum, or neither at x = 2. Justify your answer.
 - (c) Find the value of k for which f has a critical point at x = -5.
 - (d) Let k = 6, so that $f(x) = \frac{1}{x^2 6x}$. Find the partial fraction decomposition for the function f. Find $\int f(x) dx$.

- 5. Consider the family of functions $f(x) = \frac{1}{x^2 2x + k}$, where k is a constant.
 - (a) Find the value of k, for k > 0, such that the slope of the line tangent to the graph of f at x = 0 equals 6.
 - (b) For k = -8, find the value of $\int_0^1 f(x) dx$.
 - (c) For k = 1, find the value of $\int_0^2 f(x) dx$ or show that it diverges.