Fundamental Theorem of Calculus Guided Practice

Students need much practice with the Fundamental Theorems of Calculus since a good portion of the AP Exam involves these famous theorems.

Students should be able to:

- Use the fundamental theorem to evaluate definite integrals.
- Use various forms of the fundamental theorem in application situations.
- Calculate the average value of a function over a particular interval.
- Use the other fundamental theorem.

Fundamental Theorem of Calculus

Given $\frac{d y}{d x}=3 x^{2}+2 x-4$ with the initial condition $y(2)=-1$. Find $y(3)$.
Method 1: Integrate $y=\int\left(3 x^{2}+2 x-4\right) d x$, and use the initial condition to find C. Then write the particular solution, and use your particular solution to find $y(3)$.

Optional Method: Use the Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$

Sometimes there is no antiderivative so we must use the optional method and our graphing calculator.
Example 1: $f^{\prime}(x)=\sin \left(x^{2}\right)$ and $f(3)=-5$. Find $f(2)$.

Example 2 The graph of f^{\prime} consists of two line segments and a semicircle as shown on the right. Given that $f(-2)=5$, find:
(a) $f(0)$
(b) $f(2)$
(c) $f(6)$

Example 3 The graph of f^{\prime} is shown. Use the figure and the fact that $f(4)=5$ to find:
(a) $f(0)$
(b) $f(7)$
(c) $f(9)$

Then sketch the graph of f.

Example 4. A pie with a temperature of $95^{\circ} \mathrm{C}$ is put into a $25^{\circ} \mathrm{C}$ room when $t=0$. The pie's temperature is decreasing at a rate of $r(t)=6 e^{-0.1 t}{ }^{\circ} \mathrm{C}$ per minute. Estimate the pie's temperature when $t=5$ minutes.

Fundamental Theorem of Calculus Practice

Work problems 1-2 by both methods. Do not use your calculator.

1. $y^{\prime}=3-\frac{1}{x^{2}}$ and $y(1)=6$. Find $y(2)$.
2. $f^{\prime}(x)=\cos (3 x)$ and $f(0)=3$. Find $f\left(\frac{\pi}{4}\right)$.

Work problems 3-6 using the Fundamental Theorem of Calculus and your calculator.
3. $f^{\prime}(x)=\cos \left(x^{3}\right)$ and $f(0)=4$. Find $f(1)$.
4. $f^{\prime}(x)=e^{-x^{2}}$ and $f(4)=3$. Find $f(2)$.
5. A particle moving along the x-axis has position $x(t)$ at time t with the velocity of the particle $v(t)=5 \cos \left(t^{2}\right)$. At time $t=5$, the particle's position is (3, 0). Find the position of the particle when $t=7$.
6. Let $F(t)$ represent a bacteria population which is 3 million at time $t=0$. After t hours, the population is growing at an instantaneous rate of 2^{t} million bacteria per hour. Find the total increase in the bacteria population during the first four hours, and find the population at $t=4$ hours.

Use the Fundamental Theorem of Calculus and the given graph.
7. The graph of f^{\prime} is shown on the right.
$\int_{1}^{4} f^{\prime}(x) d x=6.2$ and $f(1)=3$. Find $f(4)$.

8. The graph of f^{\prime} is the semicircle shown on the right.

Find $f(-3)$ given that $f(3)=9$.

9. The graph of f^{\prime}, consisting of two line segments and a semicircle, is shown on the right. Given that $f(-3)=6$, find:
(a) $f(1)$
(b) $f(4)$
(c) $f(7)$

Fundamental Theorem of Calculus Guided Practice Solutions

Given $\frac{d y}{d x}=3 x^{2}+2 x-4$ with initial condition $y(2)=-1$. Find $y(3)$.

$$
\begin{aligned}
& y=\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}-4 x+C \\
& -1=8+4-8+C
\end{aligned}
$$

Method 1: $-5=C$

$$
\begin{aligned}
& y=x^{3}+x^{2}-4 x-5^{3} \\
& y(3)=3^{3}+3^{2}-12-5=19
\end{aligned}
$$

Optional Method: $\int_{2}^{3}\left(3 x^{2}+2 x-4\right) d x=y(3)-y(2)$

$$
\begin{aligned}
y(2)+\int_{2}^{3}\left(3 x^{2}+2 x-4\right) d x & =-1+\left.\left(x^{3}+x^{2}-4 x\right)\right|_{2} ^{3} \\
& =-1+(27+9-12-8-4+8)=19
\end{aligned}
$$

Example 1: $\int_{2}^{3}\left(\sin \left(x^{2}\right) d x=f(3)-f(2)\right.$

$$
f(2)=f(3)-\int_{2}^{3}\left(\sin \left(x^{2}\right) d x=-5+.031=-4.96878\right.
$$

Example 2:
a) $\int_{-2}^{0} f^{\prime}(x) d x=f(0)-f(-2)$

$$
\int_{-2}^{0} f^{\prime}(x) d x+f(-2)=f(0)
$$

$$
\frac{1}{2}(2)(2)+5=7
$$

b) $\int_{-2}^{2} f^{\prime}(x) d x=f(2)-f(-2)$

$$
\int_{-2}^{2} f^{\prime}(x) d x+f(-2)=f(2)
$$

$$
5+4=9
$$

c) $\int_{-2}^{6} f^{\prime}(x) d x=f(6)-f(-2)$

$$
\int_{-2}^{6} f^{\prime}(x) d x+f(-2)=f(6) ; 9-\frac{1}{2}(\pi)\left(2^{2}\right)=9-2 \pi
$$

Example 3:
a) $\int_{0}^{4} f^{\prime}(x) d x=f(4)-f(0)$

$$
f(0)=f(4)-\int_{0}^{4} f^{\prime}(x) d x=5-8=-3
$$

b) $\int_{4}^{7} f^{\prime}(x) d x=f(7)-f(4)$
$f(7)=f(4)+\int_{4}^{7} f^{\prime}(x) d x=5-4=1$
c) $\int_{4}^{9} f^{\prime}(x) d x=f(9)-f(4)$
$f(4)+\int_{4}^{9} f^{\prime}(x) d x=f(9)$
$5-4+\frac{8}{3}=\frac{11}{3}$

Example 4: $95-\int_{0}^{5} 6 e^{-.1 t} d t=71.392^{0} C$
Fundamental Theorem of Calculus Practice

1. $\int_{1}^{2}\left(3-\frac{1}{x^{2}}\right) d x=y(2)-y(1)=\frac{17}{2}$
2. $\int_{0}^{\frac{\pi}{4}}(\cos (3 x)) d x=f\left(\frac{\pi}{4}\right)-f(0)=3+\frac{\sqrt{2}}{6}$
3. $\int_{0}^{1}\left(\cos \left(x^{3}\right)\right) d x=f(1)-f(0)$
$4+\int_{0}^{1}\left(\cos \left(x^{3}\right)\right) d x=4.932$
4. $\int_{2}^{4} e^{-x^{2}} d x=f(4)-f(2)=3-\int_{2}^{4} e^{-x^{2}} d x=2.996$
5. $\int_{5}^{7} v(t) d t=s(7)-s(5)$
$\int_{5}^{7} v(t) d t+s(5)=s(7)=\int_{5}^{7} 5 \cos \left(t^{2}\right) d t+3=2.734$
6. $\int_{0}^{4} 2^{t} d t=F(4)-F(0)$
$3+\int_{0}^{4} 2^{t} d t=24.640$ million bacteria

Fundamental Theorem of Calculus Guided Practice Solutions

$\int_{1}^{4} f^{\prime}(x) d x=f(4)-f(1)$
7. $6.2=f(4)-3$
$f(4)=6.2+3=9.2$
$\int_{-3}^{3} f^{\prime}(x) d x=f(3)-f(-3)$
8. $\frac{1}{2} \pi\left(3^{2}\right)=9-f(-3)$
$f(-3)=9-\frac{9 \pi}{2}$

$$
\int_{-3}^{1} f^{\prime}(x) d x=f(1)-f(-3)
$$

9. a. $\frac{1}{2}(4)(4)=f(1)-6$

$$
f(1)=6+8=14
$$

$\int_{-3}^{4} f^{\prime}(x) d x=f(4)-f(-3)$
b.

$$
f(4)=6+8-\frac{1}{2}(3)(2)=11
$$

$$
\begin{aligned}
& \int_{-3}^{7} f^{\prime}(x) d x=f(7)-f(-3) \\
& \text { c. } \\
& f(7)=6+5+\frac{1}{4}(\pi)(9)=11+\frac{9 \pi}{4}
\end{aligned}
$$

