Unit 5 — Integration — Test 1 — Study Guide

Concepts to know:

1.

Finding anti-derivatives using the reverse-chain rule (with or without u-substitution) — must know

trigonometric derivatives/integrals, as well as ‘e’ and In.

Motion problems with integration

Identifying an integral as a limit of a Riemann sum.

Calculating definite integrals (including integrals calculated using geometric formulas)

Estimating Integrals using Riemann sums (LRAM, RRAM, MRAM, and Trapezoidal approximations.)

Basic integrals that should be memorized:

Trigonometric Functions:

_[ sin(u)du =

j cos(u)du =

_[ sec’ (1) du =

Icﬁc:(u}a'u =

Evaluating a Definite Integral:

b
[ rax = Fo) - F@

Where F is the anti-derivative of f

Reverse Power Rule:

xdx =

Critical Integrals to Know:

etdu =

1
—du =
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o | Fedx = 1) - f@



Definite and Indefinite Integral Practice

If U-sub doesn’t work, try algebraic manipulation and/or simplification
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Multiple Choice Released AP Questions — Definite and Indefinite Integrals
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3 . . .
Using the substitution, # =3x—1, jn \3x—1 dx is equivalent to which of the

following?
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The Definite Integral as Area, and Integrals Using Geometric Formulas

0\'

Graph of f

The graph of a piecewise linear function f(x), for =3<x <2 is shown above. What is the

value of Ji(f(x)+2)dx ?

(A) S
(B) 6.5
(C) 11
(D) 12.5
]x—l] 41
—_ X
S(X)=9 x-1
1 cx=1

4
If f is the function defined above, then j f(x)dx is
=1

(A) 1
(B) 2
©) 5
(D) nonexistent

10

The function g is continuous on the closed interval [2, 10]. If J g(x)dx =63 and

j%g(x)dx: —-16, then ng(x)dxz

10

(A) 31
(B) 62
(C) 95
(D) 190
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The Definite Integral a Limit of a Riemann Sum

Limit Statement Definite Integral
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Definite Integral Limit Statement
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Which of the following limits is equal to J‘xjdr ?
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Motion Problems Utilizing Integration

A particle moves along the x-axis with velocity given by w(t) =3¢’ +6¢ for time ¢>0.
If the particle 1s at position x =2 at time 7 =0, what 1s the position of the particle at
time 1 =1?

(A) 4
(B) 6
(C) 0
(D) 11
(E) 12

A particle travels in a straight line with a constant acceleration of 3 meters per second per
second. If the velocity of the particle 1s 10 meters per second at time 2 seconds, how far does
the particle travel during the time interval when 1ts velocity increases from 4 meters per
second to 10 meters per second?

(A) 20m
(B) 14m
(C) 7m
(D) 6m
(E) 3m

A particle moves along the x-axis with acceleration at any time 7 given as
a(f) =3t + 4t + 6. If the particle’s initial velocity is 10 and its initial position
1s 2, what 1s the position function?

A bottle rocket 1s shot upward from a 10 foot stand with velocity v(7) =50—1.67 .

What 1s the position of the bottle rocket after 2 seconds?

. . . : :
Let v(f) =—+sin3f represent the velocity of an object moving on a line. At7= —, the
T

w | 3

position 1s 4.

(a) Write the acceleration function.

(b) Write the position function.

A particlemoves along a coordinate line. Its acceleration function is a(.f] for 1 =0. For each
problem, find the position function s(f) and the velocity function 1=(f).

1) alt) =-2; s(0)=-156; +{(0)=25 2) al#) = 6¢—40; s(0)=0; +{0)=100

A particlemoves along a coordinate line. Its acceleration function is a(f) for 1=0. For each
problem, find the position, velocity, and speed at the given value for £

3) alt) = 61—24: 5(0)=0; +(0)=0; at =6 4) a?) =2: 5(0) =80: W{0) =—18; at r=6



Rectangular and Trapezoidal Approximations

Let f be the function given by f(x)=4". If four subintervals of equal length are used, what

3
is the value of the left Riemann sum approximation for .[1 f(x)dx?

(A) 30
(B) 60
(C) 62
(D) 120
i’ The graph of the function f is shown above for 0 <x <3 . Of the following, which has the
least value?
3
t (A) [ fx)dx
Ir (B) Left Riemann sum approximation of f f(x)dx with 4 subintervals of equal length
4 - " . . . . 3 . -
0 : ' ‘ a (C) Right Riemann sum approximation of jl JS(x)dx with 4 subintervals of equal length
Graph of f

(D) Midpoint Riemann sum approximation of ff(x)dx with 4 subintervals of equal length

(E) Trapezoidal sum approximation of L"f(x)dx with 4 subintervals of equal length

If three equal subdivisions of [—4, 2] are used, what is the trapezoidal approximation of
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4
If a trapezoidal sum overapproximates I d f(x)dx, and a right Riemann sum

underapproximates j:f(x)dx , which of the following could be the graph of y = f'(x)?
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a(t) (ft/sec?)
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The data for the acceleration a(7) of a car from 0 to 6 seconds are given in the table

above. If the velocity att =0 is 11 feet per second, the approximate value of the
velocity at t = 6, computed using a left-hand Riemann sum with three subintervals of
equal length, is

(A) 26 ft/sec
(B) 30 ft/sec
(C) 7ft/sec

(D) 39 ft/sec
(E) 41 ft/sec

x (0]o5([1(15([2
f(x)|6]14|24]| 28 |34

The table above gives selected values for a continuous function f . If fis increasing over

the closed interval [O, 2], which of the following could be the value of I(: f(x)dx?
(A) 36
(B) 41
(C) 50
(D) 53

1
(minutes)|| 2 5 7 10

{h(r) 35 | 100 | 155 | 185 | 200
(inches)

The depth of water in tank A, in inches, is modeled by a differentiable and increasing function £ for
0 =1 = 10, where 7 is measured in minutes. Values of h(r) for selected values of f are given in the table above.

10
Approximate the value of -[D h(t) dt using a right Riemann sum with the four subintervals indicated by
- . . - 10 -
the data in the table. Is this approximation greater than or less than JO h(t) df 7 Give a reason for your

ANSWET.



