Unit 5 - Integration - Test 1 - Study Guide

Concepts to know:

- 1. Finding anti-derivatives using the reverse-chain rule (with or without u-substitution) must know trigonometric derivatives/integrals, as well as 'e' and ln.
- 2. Calculating definite integrals (including integrals calculated using geometric formulas)
- 3. Identifying an integral as a limit of a Riemann sum.
- 4. Motion problems with integration
- 5. Estimating Integrals using Riemann sums (LRAM, RRAM, MRAM, and Trapezoidal approximations.)

Basic integrals that should be memorized:

Trigonometric Functions:

$$\int \sin(u) \, du =$$

$$\int \cos(u) \, du =$$

$$\int \sec^2(u) \, du =$$

$$\int \csc^2(u) \, du =$$

Reverse Power Rule:

$$\int x^n dx =$$

Critical Integrals to Know:

$$\int e^u du =$$

$$\int \frac{1}{u} du =$$

Evaluating a Definite Integral:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 or

Where F is the anti-derivative of f

or
$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

Definite and Indefinite Integral Practice If U-sub doesn't work, try algebraic manipulation and/or simplification

$$\int_0^{\sqrt{\ln x}} x e^{x^2} dx$$

$$\int \frac{e^x}{1+e^x} \, dx$$

$$\int \left(x - \frac{1}{2x}\right)^2 dx$$

$$\int_0^9 e^{\ln \sqrt{x}} dx$$

$$\int \frac{x+1}{x^2-1} \, dx$$

$$\int_{0}^{1} \frac{x}{\sqrt{8x^{2}+1}} dx$$

$$\int x^3 \sqrt{x^4 + 5} \ dx$$

$$\int \frac{2x^2 + 2x + 3}{x + 1} \, dx$$

$$\int \frac{e^x}{1+3e^x} dx$$

$$\int \frac{1}{x^2} dx$$

$$\int_1^e \frac{x^2 - 1}{x} \, dx =$$

$$\int e^{2x} \sin(e^{2x} - e) \, dx$$

Multiple Choice Released AP Questions – Definite and Indefinite Integrals

$$\int \cos 3x \, dx =$$

- (D) $\frac{1}{3}\sin 3x + C$ (E) $3\sin 3x + C$

- $\int \cos 3x \, dx = \begin{cases} \int \frac{1-3y}{\sqrt{2y-3y^2}} \, dy = \\ (A) -3\sin 3x + C & (B) -\sin 3x + C \end{cases}$ $(C) -\frac{1}{3}\sin 3x + C$ $(D) \frac{1}{2}\sin 3x + C & (E) 3\sin 3x + C \end{cases}$ $(C) \frac{1}{2}\ln(\sqrt{2y-3y^2}) + C$ $(D) \frac{1}{4}\ln(\sqrt{2y-3y^2}) + C$ $(D) \frac{1}{4}\ln(\sqrt{2y-3y^2}) + C$

 - (E) $\sqrt{2y-3y^2} + C$

$$\int_{1}^{e} \frac{x^3 - 2}{x} \, dx =$$

- (D) $\frac{e^3}{3} + \frac{5}{3}$ (E) $e^2 \frac{2}{a}$

$$\int e^x \cos(e^x + 1) dx =$$

- (A) $\sin(e^x+1)+C$
- (A) $\frac{e^3}{3} \frac{7}{3}$ (B) $\frac{e^3}{3} + \frac{7}{3}$ (C) $\frac{e^3}{3} \frac{5}{3}$ (B) $e^x \sin(e^x + 1) + C$
 - (C) $e^x \sin(e^x + x) + C$
 - (D) $\frac{1}{2}\cos^2(e^x+1)+C$

$$\int_0^{\frac{\pi}{12}} \frac{dx}{\cos^2 3x} =$$

- (A) -3 (B) -1 (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$
- (E) 3
- $f(x) = \begin{cases} x & \text{for } x < 2 \\ 3 & \text{for } x \ge 2 \end{cases}$

If f is the function defined above, then $\int_{-1}^{1} f(x)dx$ is

- (A) $\frac{9}{2}$
- (B) $\frac{15}{2}$
- (D) undefined

$$\int_{e}^{e^3} \frac{\ln x}{x} \, dx =$$

- (A) 2 (B) $\frac{5}{2}$ (C) 4 (D) $\frac{9}{2}$
- (E) 8

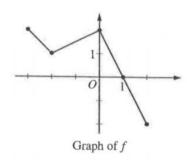
Using the substitution, u = 3x - 1, $\int_0^3 \sqrt{3x - 1} \ dx$ is equivalent to which of the following?

- (A) $\frac{1}{3} \int_{\frac{1}{2}}^{\frac{4}{3}} \sqrt{u} \ du$ (B) $\int_{-1}^{8} \sqrt{u} \ du$ (C) $\frac{1}{3} \int_{-1}^{8} \sqrt{u} \ du$
- (D) $\int_0^3 \sqrt{u} \ du$
 - (E) $\frac{1}{3}\int_0^3 \sqrt{u} \ du$

Using the substitution $u = \sqrt{x}$, the integral $\int_{1}^{9} \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ is equal to which of the following?

- (A) $\frac{1}{2}\int_{0}^{3} \sin u \ du$
- (B) $2\int_{-u}^{3} \frac{\sin u}{u} du$
- (C) $2 \int \sin u \ du$
- (D) $2 \int \sin u \ du$

The Definite Integral as Area, and Integrals Using Geometric Formulas



The graph of a piecewise linear function f(x), for $-3 \le x \le 2$, is shown above. What is the value of $\int_{-2}^{2} (f(x)+2) dx$?

- (A) 5
- (B) 6.5
- (C) 11
- (D) 12.5

$$f(x) = \begin{cases} \frac{|x-1|}{x-1} &, x \neq 1 \\ 1 &, x = 1 \end{cases}$$

If f is the function defined above, then $\int_{-1}^{4} f(x)dx$ is

- (A) 1
- (B) 2
- (C) 5
- (D) nonexistent

The function g is continuous on the closed interval [2, 10]. If $\int_{2}^{10} g(x)dx = 63$ and

$$\int_{10}^{5} \frac{1}{2} g(x) dx = -16 \text{ , then } \int_{2}^{5} 2g(x) dx =$$

- (A) 31
- (B) 62
- (C) 95
- (D) 190

$$\int_{1}^{0} \sqrt{16 - x^2} dx$$

$$\int_{2\sqrt{2}}^{-2\sqrt{2}} \sqrt{8 - x^2} + 3 \, dx$$

The Definite Integral a Limit of a Riemann Sum

Limit Statement	Definite Integral
$\lim_{n \to \infty} \sum_{k=1}^{n} \left((2 + \frac{3}{n}k)^2 + 2 \right) \cdot \frac{3}{n}$	
$\lim_{n \to \infty} \sum_{k=1}^{n} \left(3\left(\frac{2}{n}(k-1) + 6\right) \cdot \frac{2}{n} \right)$	
$\lim_{n \to \infty} \sum_{k=1}^{n} \left(2(4 + \frac{5}{n}k)^3 + 6 \right) \cdot \frac{5}{n}$	
$\lim_{n \to \infty} \sum_{k=1}^{n} \left(4 - \left(\frac{1}{n} k \right)^{2} \right) \cdot \frac{1}{n}$	
$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sin(3 + \frac{7}{n}(k-1)) \cdot \frac{7}{n} \right)$	

Definite Integral	Limit Statement			
$\int_{-1}^{2} (x^2 - 6) dx$				
$\int_{1}^{9} (5x+4)dx$				

Which of the following limits is equal to $\int_{3}^{7} x^{3} dx$?

(A)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\left(3 + \frac{k}{n} \right)^{3} \cdot \frac{1}{n} \right)$$

(B)
$$\lim_{n\to\infty}\sum_{k=1}^{n}\left(\left(3+\frac{k}{n}\right)^{3}\cdot\frac{4}{n}\right)$$

(C)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\left(3 + \frac{4k}{n} \right)^{3} \cdot \frac{1}{n} \right)$$

(D)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\left(3 + \frac{4k}{n} \right)^{3} \cdot \frac{4}{n} \right)$$

Which of the following integral expressions is equal to $\lim_{n\to\infty} \sum_{k=1}^{n} \left(\left(1 + \frac{2k}{n} \right)^2 \cdot \frac{1}{n} \right)$?

(A)
$$\int_{1}^{1} (1+2x)^2 dx$$

(B)
$$\int_{0}^{2} (1+x)^{2} dx$$

(C)
$$\int_{0}^{3} x^{2} dx$$

(D)
$$\frac{1}{2} \int_{0}^{2} x^{2} dx$$

Motion Problems Utilizing Integration

A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for time $t \ge 0$. If the particle is at position x = 2 at time t = 0, what is the position of the particle at time t = 1?

- (A) 4
- (B) 6
- (C) 0
- (D) 11
- 12 (E)

A particle travels in a straight line with a constant acceleration of 3 meters per second per second. If the velocity of the particle is 10 meters per second at time 2 seconds, how far does the particle travel during the time interval when its velocity increases from 4 meters per second to 10 meters per second?

- (A) 20 m
- (B) 14 m
- (C) 7 m
- (D) 6 m
- (E) 3 m

A particle moves along the x-axis with acceleration at any time t given as $a(t) = 3t^2 + 4t + 6$. If the particle's initial velocity is 10 and its initial position is 2, what is the position function?

A bottle rocket is shot upward from a 10 foot stand with velocity v(t) = 50 - 1.6t.

What is the position of the bottle rocket after 2 seconds?

Let $v(t) = \frac{1}{\pi} + \sin 3t$ represent the velocity of an object moving on a line. At $t = \frac{\pi}{3}$, the position is 4.

- Write the acceleration function. (a)
- (b) Write the position function.

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the position function s(t) and the velocity function v(t).

1)
$$a(t) = -2$$
; $s(0) = -156$; $v(0) = 25$

2)
$$a(t) = 6t - 40$$
; $s(0) = 0$; $v(0) = 100$

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the position, velocity, and speed at the given value for t.

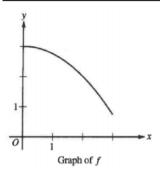
3)
$$a(t) = 6t - 24$$
; $s(0) = 0$; $v(0) = 0$; at $t = 6$ 4) $a(t) = 2$; $s(0) = 80$; $v(0) = -18$; at $t = 6$

4)
$$a(t) = 2$$
; $s(0) = 80$; $v(0) = -18$; at $t = 6$

Rectangular and Trapezoidal Approximations

Let f be the function given by $f(x) = 4^x$. If four subintervals of equal length are used, what is the value of the left Riemann sum approximation for $\int_1^3 f(x)dx$?

- (A) 30
- (B) 60
- (C) 62
- (D) 120



The graph of the function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?

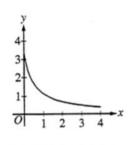
- (A) $\int_1^3 f(x) dx$
- (B) Left Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
- (C) Right Riemann sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length
- (D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
- (E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length

If three equal subdivisions of [-4, 2] are used, what is the trapezoidal approximation of

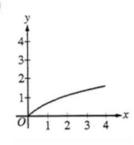
$$\int_{-4}^{2} \frac{e^{-x}}{2} dx ?$$

- (A) $e^2 + e^0 + e^{-2}$ (B) $e^4 + e^2 + e^0$ (C) $e^4 + 2e^2 + 2e^0 + e^{-2}$
- (D) $\frac{1}{2}(e^4 + e^2 + e^0 + e^{-2})$
- (E) $\frac{1}{2}(e^4 + 2e^2 + 2e^0 + e^{-2})$

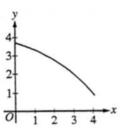
If a trapezoidal sum overapproximates $\int_0^4 f(x)dx$, and a right Riemann sum underapproximates $\int_0^4 f(x) dx$, which of the following could be the graph of y = f(x)?

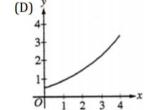


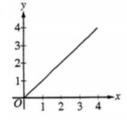
(B)



(C)







t (sec)	0	2	4	6
a(t) (ft/sec ²)	5	2	8	3

The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t=0 is 11 feet per second, the approximate value of the velocity at t=6, computed using a left-hand Riemann sum with three subintervals of equal length, is

- (A) 26 ft/sec
- (B) 30 ft/sec
- (C) 7 ft/sec
- (D) 39 ft/sec
- (E) 41 ft/sec

X	0	0.5	1	1.5	2
f(x)	6	14	24	28	34

The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,2], which of the following could be the value of $\int_0^2 f(x)dx$?

- (A) 36
- (B) 41
- (C) 50
- (D) 53

(minutes)	0	2	5	7	10
h(t) (inches)	3.5	10.0	15.5	18.5	20.0

The depth of water in tank A, in inches, is modeled by a differentiable and increasing function h for $0 \le t \le 10$, where t is measured in minutes. Values of h(t) for selected values of t are given in the table above.

Approximate the value of $\int_0^{10} h(t) dt$ using a right Riemann sum with the four subintervals indicated by the data in the table. Is this approximation greater than or less than $\int_0^{10} h(t) dt$? Give a reason for your answer.