Concepts to know:

- 1. Finding anti-derivatives using the reverse-chain rule (with or without u-substitution) must know trigonometric derivatives/integrals, as well as 'e' and ln.
- 2. Calculating definite integrals (including integrals calculated using geometric formulas)
- 3. Identifying an integral as a limit of a Riemann sum.
- 4. Motion problems with integration
- 5. Estimating Integrals using Riemann sums (LRAM, RRAM, MRAM, and Trapezoidal approximations.)

Basic integrals that should be memorized:

Trigonometric Functions:

Reverse Power Rule:

 $\int \sin(u) du =$

$$\int x^n dx =$$

 $\int \cos(u) du =$

Critical Integrals to Know:

$$\int \sec^2(u) du =$$

 $\int e^u du =$

 $\int \csc^2(u) \, du =$

$$\int \frac{1}{u} du =$$

or

Evaluating a Definite Integral:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

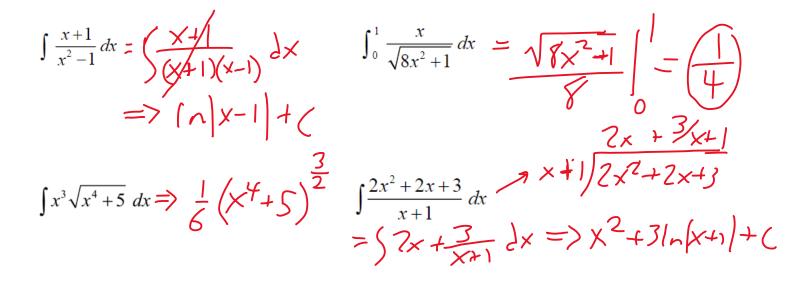
Where F is the anti-derivative of f

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

Definite and Indefinite Integral Practice If U-sub doesn't work, try algebraic manipulation and/or simplification

$$\int_{0}^{\sqrt{\ln x}} x e^{x^{2}} dx = \frac{\chi}{2} \qquad \qquad \int \frac{e^{x}}{1+e^{x}} dx \implies (n) |+e^{x}| + ($$

$$\int \left(x - \frac{1}{2x}\right)^2 dx \Longrightarrow \frac{\chi^3}{3} - \chi - \frac{1}{2\chi^3} + \left(\int_0^9 \varphi^{\frac{1}{2}\sqrt{x}} dx\right) = \left(\int_0^9 \sqrt{x} dx = \frac{7\chi^3}{3}\right)^9$$
$$= (8)$$



 $\int \frac{e^x}{1+3e^x} dx \Longrightarrow \frac{1}{2} \ln \left(1+3e^x \right) + \left(\int \frac{1}{x^2} dx = \int x^2 dx = \right) - \frac{1}{x} + C$

 $\int_{1}^{e} \frac{x^{2}-1}{x} dx = \left(\frac{x^{2}}{x} - \frac{1}{x} \right) dx \qquad \int e^{2x} \sin(e^{2x}-e) dx \implies -\frac{1}{2} \cos(e^{2x}-e) dx = \left(-\frac{1}{2} \cos(e^{2x}-e) \right) dx = \left(-\frac{1}{2$ $= \int_{1}^{E} x - \frac{1}{x} dx = \frac{x^{2}}{2} - \ln x \Big|_{=}^{e} \frac{e^{2}}{e^{-3}}$

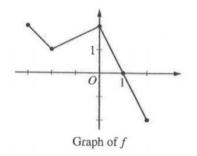
$(E) \sqrt{2y-3y^2} + C$	
$\int_{1}^{e} \frac{x^{3}-2}{x} dx = \int e^{x} \cos(e^{x}+1) dx = $ $(A) \frac{e^{3}}{3} - \frac{7}{3} \qquad (B) \frac{e^{3}}{3} + \frac{7}{3} \qquad (C) \frac{e^{3}}{3} - \frac{5}{3} \qquad (A) \sin(e^{x}+1) + C \\ (B) e^{x} \sin(e^{x}+1) + C \\ (B) e^{x} \sin(e^{x}+1) + C \\ (C) e^{x} \sin(e^{x}+x) + C \\ (D) \frac{1}{2} \cos^{2}(e^{x}+1) + C \qquad (D) \frac{1}{2} \cos^{2}(e^$	
$\int_{0}^{\frac{\pi}{12}} \frac{dx}{\cos^{2} 3x} = f(x) = \begin{cases} x \text{ for } x < 2 \\ 3 \text{ for } x \ge 2 \end{cases}$ (A) -3 (B) -1 (C) $-\frac{1}{3}$ (D) $\frac{1}{3}$ (E) 3 $f(x) = \begin{cases} x \text{ for } x < 2 \\ 3 \text{ for } x \ge 2 \end{cases}$ If f is the function (A) $\frac{9}{2}$ (B) $\frac{15}{2}$ (B) $\frac{15}{2}$ (C) $\frac{17}{2}$ (D) undefined	defined above, then $\int_{-1}^{4} f(x) dx$ is

Using the substitution, u = 3x - 1, $\int_{0}^{3} \sqrt{3x - 1} dx$ is equivalent to which of the following?

(A) $\frac{1}{3} \int_{\frac{1}{3}}^{\frac{4}{3}} \sqrt{u} \, du$ (B) $\int_{-1}^{8} \sqrt{u} \, du$ (C) $\int_{0}^{3} \sqrt{u} \, du$ (E) $\frac{1}{3} \int_{0}^{3} \sqrt{u} \, du$

Using the substitution $u = \sqrt{x}$, the integral $\int_{1}^{9} \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ is equal to which of the following?

(A) $\frac{1}{2} \int_{1}^{3} \sin u \, du$ (B) $2 \int_{1}^{3} \frac{\sin u}{u} \, du$ (C) $2 \int_{1}^{3} \sin u \, du$ (D) $2 \int_{1}^{9} \sin u \, du$ The Definite Integral as Area, and Integrals Using Geometric Formulas



The graph of a piecewise linear function f(x), for $-3 \le x \le 2$, is shown above. What is the value of $\int_{-2}^{2} (f(x)+2) dx$?

(A) 5 (B) 6.5 (C) 11 (D) 12.5

 $f(x) = \begin{cases} \frac{|x-1|}{x-1} , & x \neq 1\\ 1 , & x = 1 \end{cases}$ If f is the function defined above, then $\int_{-1}^{4} f(x) dx$ is $\bigotimes_{\substack{(B) \ 2\\ (C) \ 5}} 1$

(D) nonexistent

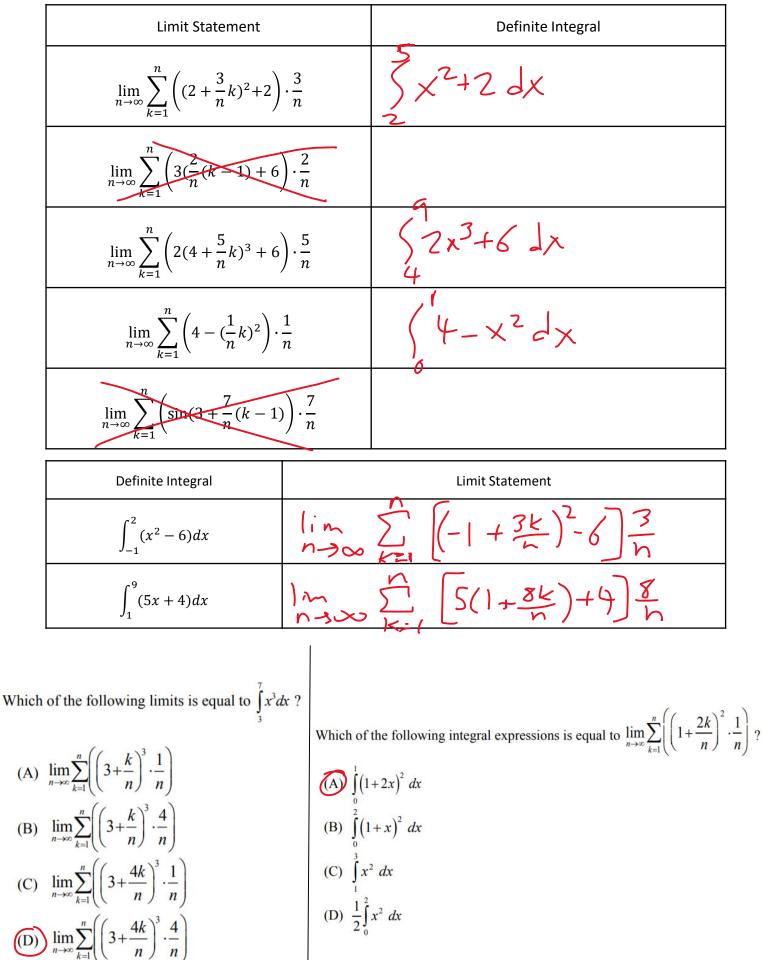
The function g is continuous on the closed interval [2, 10]. If $\int_{10}^{10} g(x) dx = 63$ and

$$\int_{10}^{5} \frac{1}{2} g(x) dx = -16 \text{, then } \int_{2}^{5} 2g(x) dx =$$
(A) 31

(B) 62
(C) 95
(D) 190

$$\int_{-4}^{0} \sqrt{16 - x^2} dx = 4 \pi$$

$$\int_{2\sqrt{2}}^{-2\sqrt{2}} \sqrt{8 - x^2} + 3 dx = -4\pi$$



The Definite Integral a Limit of a Riemann Sum

Motion Problems Utilizing Integration

A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for time $t \ge 0$. If the particle is at position x = 2 at time t = 0, what is the position of the particle at time t = 1?

 $(A) \quad 4 \\ (B) \quad 6 \\ (C) \quad 0$

(D) 11

(D) 11 (E) 12

12 **(E)** A particle travels in a straight line with a constant acceleration of 3 meters per second per second. If the velocity of the particle is 10 meters per second at time 2 seconds, how far does the particle travel during the time interval when its velocity increases from 4 meters per second to 10 meters per second? challenging! (A) 20 m (B) 14 m (C) 7 m (D) 6 m **(E)** 3 m A particle moves along the x-axis with acceleration at any time t given as $a(t) = 3t^2 + 4t + 6$. If the particle's initial velocity is 10 and its initial position is 2, what is the position function? $5(+) = \frac{1}{4} + \frac{2}{4} + \frac{3}{2} + \frac{3}{4} + \frac{10}{4} + \frac{2}{2}$ A bottle rocket is shot upward from a 10 foot stand with velocity v(t) = 50 - 1.6t. 106.8 ft What is the position of the bottle rocket after 2 seconds? Let $v(t) = \frac{1}{\pi} + \sin 3t$ represent the velocity of an object moving on a line. At $t = \frac{\pi}{3}$, the position is 4. (a) (b)

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the position function s(t) and the velocity function v(t).

1) $a(t) = -2; \ s(0) = -156; \ v(0) = 25$ 2) $a(t) = 6t - 40; \ s(0) = 0; \ v(0) = 100$

A particle moves along a coordinate line. Its acceleration function is a(t) for $t \ge 0$. For each problem, find the position, velocity, and speed at the given value for t.

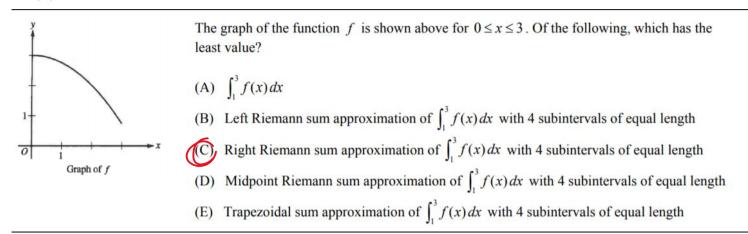
3)
$$a(t) = 6t - 24$$
; $s(0) = 0$; $v(0) = 0$; at $t = 6$
4) $a(t) = 2$; $s(0) = 80$; $v(0) = -18$; at $t = 6$

Rectangular and Trapezoidal Approximations

Let f be the function given by $f(x) = 4^x$. If four subintervals of equal length are used, what

is the value of the left Riemann sum approximation for $\int_{1}^{3} f(x) dx$?

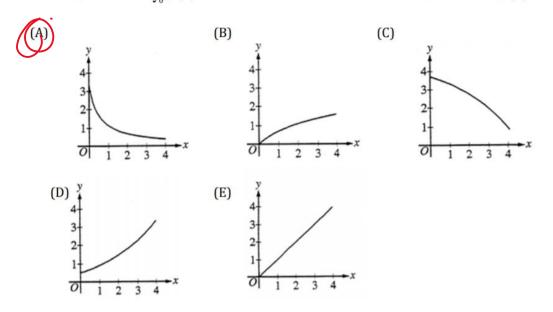
- (A) 30 (B) 60 (C) 62
- (D) 120



If three equal subdivisions of [-4, 2] are used, what is the trapezoidal approximation of

 $\int_{-4}^{2} \frac{e^{-x}}{2} dx ?$ (A) $e^{2} + e^{0} + e^{-2}$ (B) $e^{4} + e^{2} + e^{0}$ (C) $e^{4} + 2e^{2} + 2e^{0} + e^{-2}$ (D) $\frac{1}{2}(e^{4} + e^{2} + e^{0} + e^{-2})$ (D) $\frac{1}{2}(e^{4} + 2e^{2} + 2e^{0} + e^{-2})$

If a trapezoidal sum overapproximates $\int_{0}^{4} f(x) dx$, and a right Riemann sum underapproximates $\int_{0}^{4} f(x) dx$, which of the following could be the graph of y = f(x)?



t (sec)	0	2	4	6
a(t) (ft/sec ²)	5	2	8	3

The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t = 0 is 11 feet per second, the approximate value of the velocity at t = 6, computed using a left-hand Riemann sum with three subintervals of equal length, is

- (A) 26 ft/sec
- (B) 30 ft/sec
- (C) 7 ft/sec
- (D) 39 ft/sec
- (E) 41 ft/sec

x	0	0.5	1	1.5	2
f(x)	6	14	24	28	34

The table above gives selected values for a continuous function f. If f is increasing over

the closed interval [0,2], which of the following could be the value of $\int_0^2 f(x) dx$?

(A) 36
(B) 41
(C) 50
(D) 53

(minutes)	0	2	5	7	10
h(t) (inches)	3.5	10.0	15.5	18.5	20.0

The depth of water in tank *A*, in inches, is modeled by a differentiable and increasing function *h* for $0 \le t \le 10$, where *t* is measured in minutes. Values of *h*(*t*) for selected values of *t* are given in the table above.

Approximate the value of $\int_{0}^{10} h(t) dt$ using a right Riemann sum with the four subintervals indicated by the data in the table. Is this approximation greater than or less than $\int_{0}^{10} h(t) dt$? Give a reason for your answer. $\int_{0}^{10} h(t) dt \approx 2 \cdot 10 + 3 \cdot 155 + 2 \cdot 18.5 + 3 \cdot 20 = 163.5$ $h(t) dt \approx 10 + 3 \cdot 155 + 2 \cdot 18.5 + 3 \cdot 20 = 163.5$ in the solution is in creation is a right sum is an aver - approximation = 2