Linear Functions

- -x intercepts and y intercepts
- -graphing functions using intercepts

The ${f x}$ -intercept of a function is the x-coordinate of the point where the graph of the function intersects the x-axis.

The y-intercept of a function is the y-coordinate of the point where the graph of the function intersects the y-axis.

What is the y coordinate of the ${\bf x\text{-}intercept}$?

What is the x coordinate of the **y-intercept**?

Consider the following function; how do you find the x- and y-intercepts?

y = 2x + 2

Find the x- and y- intercepts for each of the following:

$$y = -x + 10$$

$$y = 3x + 1$$

$$2y = 4x - 16$$

$$3y = 1/2x - 2$$

How can you use x- and y- intercepts to graph a line? How many points do you need to draw a line?

Graph the following function using intercepts:

$$y = 3x + 1$$

Determining slope and intercepts from a table: -consider the function g(x) = -2x + 10

-each of the following can be used to represent g(x)

х	-1.5	-1	0	5	10	12	20	
f(x)	0	1	3	13	23	27	43	
x - int	tercep	t:	y - iı	nterce	pt:	slope:		

		х
) 50 40 30 20 10 5 0	(x) 50 40	f(x)
intercept: y - intercept: slope	- intercept:	x - int